辨識圖片中物體的最大長寬 Measuring distance between objects in an image
★範例所使用的圖檔下載位置
★程式範例執行
#以圖片最左物體最大寬為基準,量測其他物體最大長寬 from scipy.spatial import distance as dist from imutils import perspective from imutils import contours import numpy as np import argparse import imutils import cv2 def midpoint(ptA, ptB): return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5) # 構造參數解析跟解析參數 ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="指定要開啟的圖檔 ") ap.add_argument("-w", "--width", type=float, required=True, help="最左物體最大寬度 (英吋)") args = vars(ap.parse_args()) # 讀取圖檔→灰階→模糊 # cv2.GaussianBlur模糊程度可以用3x3, 5x5, 7x7 image = cv2.imread(args["image"]) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (7, 7), 0) # 輪廓描邊→補空&侵蝕 edged = cv2.Canny(gray, 50, 100) edged = cv2.dilate(edged, None, iterations=1) edged = cv2.erode(edged, None, iterations=1) # 進行偵測 cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[0] if imutils.is_cv2() else cnts[1] # 'pixels Per Metric' = object_width / know_width (相機像素 / 已知物品的寬度) (cnts, _) = contours.sort_contours(cnts) pixelsPerMetric = None # 進行一連串的輪廓校準 for c in cnts: # 忽略過小的輪廓 (限定輪廓描繪範圍) if cv2.contourArea(c) < 100: continue # 計算輪廓旋轉邊界 orig = image.copy() box = cv2.minAreaRect(c) box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box) box = np.array(box, dtype="int") # 繪製輪廓旋轉邊界 box = perspective.order_points(box) cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2) # 繪製物體角落之點 for (x, y) in box: cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1) # 計算物品上下邊界之中點 (tl, tr, br, bl) = box (tltrX, tltrY) = midpoint(tl, tr) (blbrX, blbrY) = midpoint(bl, br) # 計算物品左右邊界之中點 (tlblX, tlblY) = midpoint(tl, bl) (trbrX, trbrY) = midpoint(tr, br) # 物品邊界的四個中點設定條件 cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1) # 物品邊界的四個中點連線設定條件 cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)), (255, 0, 255), 2) cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)), (255, 0, 255), 2) # 利用歐式定理算中點之間的距離 dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY)) dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY)) # 如果未知 'pixelsPerMetric', 則使用下一行之算式 if pixelsPerMetric is None: pixelsPerMetric = dB / args["width"] # 計算物品之最大長寬 dimA = dA / pixelsPerMetric dimB = dB / pixelsPerMetric # 顯示出畫面中物品的大小 cv2.putText(orig, "{:.1f}in".format(dimA), (int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.65, (255, 255, 255), 2) cv2.putText(orig, "{:.1f}in".format(dimB), (int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX, 0.65, (255, 255, 255), 2) cv2.imshow("Image", orig) cv2.waitKey(0)
◎輸入指令
★範例執行結果
Comments
comments powered by Disqus