1. 兩輪平衡車推導

兩輪平衡車推導

數學模型

  1. 符號定義

    • m 為單擺質量
    • f 為阻尼
    • H 為輪軸到頂點高度
  2. 公視推導

    • $$H\frac{d^{2}\theta (t)}{dt^{2}} = gSin\theta(t)+a_2(t)H-a_1(t)Cos\theta(t)$$

    • t = 0 沒有加速度固 $$a_1(t) =0$$

    • $$H\frac{d^{2}\theta (t)}{dt^{2}} = gSin\theta(t)+a_2(t)H$$

    • 設角度在正負五度內 $$Sin(\theta)=1$$

    • $$H\frac{d^{2}\theta (t)}{dt^{2}} = g\theta(t)+a_2(t)H$$

    • 進行 S-domain 轉換

    • $$\phi (s) = \frac{\theta(s)}{A_2(s)} = \frac{1}{s^{2}-\frac{G}{H}}$$

    • 繪製方塊圖加控制器(PD)

    • $$\phi (s) = \frac{\theta(s)}{A_2(s)} = \frac{1}{s^{2}+\frac{k_1s}{H}+\frac{k_p-g}{H}}$$

    • $$S_1,_2 = \frac{-k_1\pm \sqrt{k_1^{2}-4H(k_p-g)}}{2H}$$


Comments

comments powered by Disqus