- 兩輪平衡車推導
兩輪平衡車推導
數學模型
-
符號定義
- m 為單擺質量
- f 為阻尼
- H 為輪軸到頂點高度
-
公視推導
-
$$H\frac{d^{2}\theta (t)}{dt^{2}} = gSin\theta(t)+a_2(t)H-a_1(t)Cos\theta(t)$$
-
t = 0 沒有加速度固 $$a_1(t) =0$$
-
$$H\frac{d^{2}\theta (t)}{dt^{2}} = gSin\theta(t)+a_2(t)H$$
-
設角度在正負五度內 $$Sin(\theta)=1$$
-
$$H\frac{d^{2}\theta (t)}{dt^{2}} = g\theta(t)+a_2(t)H$$
-
進行 S-domain 轉換
-
$$\phi (s) = \frac{\theta(s)}{A_2(s)} = \frac{1}{s^{2}-\frac{G}{H}}$$
-
繪製方塊圖加控制器(PD)
-
$$\phi (s) = \frac{\theta(s)}{A_2(s)} = \frac{1}{s^{2}+\frac{k_1s}{H}+\frac{k_p-g}{H}}$$
-
$$S_1,_2 = \frac{-k_1\pm \sqrt{k_1^{2}-4H(k_p-g)}}{2H}$$
-
Comments
comments powered by Disqus